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This note is a companion to Bouscasse and Hong (2026). We derive analytical expressions
for the likelihood, posterior distribution, and mode of the posterior distribution of a Bayesian
vector autoregression (BVAR) in which some coefficients are constrained. The constraint is a
linear constraint on some (perhaps all) of the autoregressive coefficients of the first equation
of the BVAR. We study two cases: a flat prior and a Minnesota prior implemented with
dummy variables, both with and without missing data. We use this constrained VAR in

appendix E.3 of Bouscasse and Hong (2026).

1 Notations

The BVAR model is:

L

Yir1 = Z B(l) yyy1-1 + B(/;Ct—H + U1, U ~ N(0, %), (1)
=1

where y,.1 is the vector of endogenous variables at time ¢ + 1, ¢;11 denotes the exogenous
controls, and w1 is the error term. We rewrite it by gathering the lagged values of the

endogenous variables and the controls:
Y1 = B'wrp Fu,  u ~ N(0,%), (2)

where: @1 = (Y, )1, .- ,yt+1_L,Ct+1)/ and B = (B(1),B(2)',...,B(L),B.)'. Stacking

the observations y;, x} vertically, we can rewrite the VAR as a seemingly unrelated regressions
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system:
Y=XB+U, U~MN(Q,IrX). (3)

The dimensions of Y, X, U, B, and X are respectively (T, n), (T, k), (T,n), (k,n), and (n,n)
where T' is the number of observations, n the number of endogenous variables, k the number
of right-hand side variables. Moreover, we have: k = n x L + q, where L is the number of
lags and ¢ the number of control variables. MN(0, I, Y) is the matrix normal distribution
with variance among rows Ir and variance among columns ..

In our application, the vector y; is partitioned into its debt component and its other
variables: y; = (d;—1,y¢"). We can partition B as: B = <Bd BO>. Superscript d denotes
the first column, which contains the coefficients for the debt equation; superscript o is for
the n — 1 other equations. Although we use the notation of our application, the derivations
apply to any linear restriction on the coefficients of the first equation.

We write the restriction as a subset of the rows of BY R C [1,k], being equal to a

constant column vector c:
BY =c. (4)
We denote the subset of unrestricted columns of B, I/. Note that we have:
XBY= X"®B% + XUB}, = X®c+ X4B}

where X® (XY) are the columns of X whose coefficients are restricted (unrestricted) in the
debt equation. We denote ki the number of restricted coefficients in the debt equation.

Given this restriction, we note that:
XB = (XRe+ XUB§ XDB°) = XReM® + XUBIM" + XBM, (5)
where:

Md:<1 (O)M_l), MO:((O)n_l,1 In_1>.



2 Likelihood

The likelihood of the system described in equation (3) is:

1
p(YV, X | B,Y) o |32 exp <—§Vec Y - XB) (S @ Ir) vec (Y — XB)) .

We can rewrite vec (Y — X B) with equation (5):
vec (Y — XB) = vec (Y — X"eM? — XUBIM?* — XB°M°) =Y — XB,

where curly types denote:

Y =vec (Y — XfeM?), X:<Xu ©) ) B = vec (B \ By) .

0) Lii®X

So, we obtain the likelihood as:
1
p(V, X | B,Y) o |87 exp (—5 Y-aB) ('@ Ir) (Y- XB)) .

2.1 Density for B

(6)

We turn equation (6) into a density for B. To do so, we transform the trace term in

equation (6) by completing the square:

(V- &B) (37 @ Ir) (V - XB)
—(8-8) ot (B-B)+¥ (s on)y-BO'E

where:

B
Q

(¥ (= e lr) X) " (X (S @ 1) V),

1

(X' (' eIr)Xx) .

So, we can rewrite equation (6) by transforming the term featuring B into a multivariate

normal density:

p(B, 2|V, X) x ‘Q‘I/QN@’,Q; B)

x |57 exp (—% (y’ ' elr)y- B'Q—lé)> (7



where N (B .Q; B) is a multivariate normal density for B with mean B and variance .

We need an explicit expression for

Q) We first note that we can rewrite X as:

X 0 I Ok (n
0) Lii®X O((n-1)kk—kr)  Ln—1)k

where I, is a (k, k — kg) matrix that selects the elements of X that are unrestricted in the
debt equation: X¥ = XI;;. Using the definition of , we obtain Q'

O =F (57 @ (X'X)) F = (az‘“ o i X (% e @ U’i’),(/X)) - ®
(X )oa ® (X' X Iy) (X1, XX

Equation (8) allows us to compute the determinant of Q'

o

~l(= ), 0 0%
X | (57 aa ® (I, X' X Iy)
— (a0 (57, () @ (BX'X(X'X) XX 1y)|
= (=), [FIX X" xSl X X L (9)

It will also be useful to transform the determinant of :

-1

|Z| = |Edd| ‘Eoo - ZOdZ;dlEdol = |Edd| )(Z_l)o

(10)

N
Using equations (9-10), we can rewrite equation (7):

p(B, 2| Y, X) ocN([S’,Q;B>

1|~ (T=k)/2
y |de|—(T—(k—kR))/2 ‘(2_1)001

exp (—% (Y em)y- B’Q—lé>) (1)

2.2 Density for X

We turn equation (11) into a density for ¥. To do so, we find an expression for B’ Q 1B, which
appears in equation (7). Inverting Q! with standard block matrix formulas, we obtain the
4 blocks of Q:

Qg =Saa © (I, X' X L,) ™",
Qoo = (37),) ® (X'X) 7" + (Zoa¥g) Tao) ® (IM (X' XTy)~ 5’4) ,

4



O =S & ((Jg,X'X[L,)‘1 Ig,) ,

ot =S © (Iu (JZ;X/XIM)”) .
It will soon be convenient to also know FQF":

(FOF)  =Sare (T LXXE) ™ 1)
(FQF’)

-1

=50 @ (L (X' X0 1) + (57, @ (X)) = (XX 1) 1)

(FQF’) —5 ® <IM (I, X' X L) " I&) ,
do
(FQF’) =Y, ® <1u (I, X'X )" 1;,) ,
do
where we have used: X,, = (Z_l);ol + EongdlEdo. We can express the latter more simply:
FOF =Y @ Yy + 200 @ (U — ), (12)

where:

i]00 = ( 0 (0) 1> ; QX = (X/X>71, Qz,{ = IL{ (I&X/X[u)_l IZ//I

00

BO'B=Y (L '®X)FQF ('@ X)Y
_y (2—1 ® (XuX') + (z—liooz—l) ® (X (Qy — QU)X’)) V.

We notice that:

- - Y1 (0
=% — Y, Yad1 = ( a | >> -

(0) (0)

Finally, we have:

BO'B=1tr (872X (X'X)"'X'Z)
oty (2;;265( ((X’X)—1 L (IL,X'X L) Ig,) X’Zd> . (13)

where Z =Y — X®cM? and Z? is the debt column of Z. So, equation (11) becomes:



1|~ (T=Fk)/2

00

<o (=5 (i (578) o (St ) ) ) 10

p(Y, X | B,S) x N (B,Q;B) X | S~ khR)/2 ’(2—1)

where:

S=277-7XX'X)"'X'Z,
Ry =2"X ((X/X)_l — Iy (I, X'X 1) Ié,) X'z4.

2.3 Change of Variables

Once we introduce the prior distributions, we perform the following change of variables:
Ydo — Z;dlEdo and X, — (Z*l)o_ol = Yoo — ZOdEJdlZdo.l So, we rewrite the trace terms of

equation (11) in terms of these new variables:

00

tr <2_15~> T tr (Z;dlf%dd> = tr <ngl (gdd + Rdd)) +tr ((2_1)00 (§_1)_1)

+ tr ((2—1)00 (ZadTao = 52 S0) Saa (Sad o - Sd—dlédo>) .
We obtain a final expression for the likelihood:
p (Ya X | B7 de7 (271)0_01 ) Z(;dlzdo>
x N (B, B)

JCom

1 ~ o~ \/ =~ -~
X exp (—itr ((2_1)00 <Z;d12do — Sd_dlSdo> Sad (25;2110 — Sd_dlsdo>>)
(T —(k— 1 L/~ -
« |de| (T—(k—kR))/2 exp <_§tr (del <de + Rdd)))

ek (_ % o (@_1)00 (5—1)_1) ;2552d0> : (15)

!This change of variables is a standard step to derive the marginal distributions of a Wishart or inverse
Wishart distribution. See Gupta and Nagar (2018, theorem 3.3.9) for an example.

X )(z—l)*l

00




3 Posterior Distribution

3.1 Jeffreys’s Prior
We now assume Jeffreys’s prior:

o o (D)2
p(B, %) o |22 = |5, 7D/ (=) ' '

00

Combining this prior and the likelihood in (15):
p(B, XY, X)oxp(Y,X | B,X) xp(B,%)
x N (B,%:B)
x| (=),
1 -1 -1 a-1a \ & -1 513
X exp —§tr (Z )OO (de Ydo — de Sdo) Sad <Edd Ydo — de Sdo)
T b im 1 IV
% ’de‘ (T—(k—kr)+n+1)/2 exp (—5131' (Eddl <de+Rdd>>)

% ‘(271)0—01 —(T—k+n)/2 exp <—%tr <(El)oo <541>(:01) ;delzdo) .

We now perform the change of variables mentioned in section 2: ¥4, — Z;dlEdo and
Yoo — (2_1)501 =Y — Eongdl Y40 We need to multiply the density by the determinant of

the Jacobian of this change of variables, |Sqq|" . So, we obtain:

—-1/2

p (B,Zdo, DRI Y,X) o N (B,Q;B) x MN (S;dlﬁdo,égdl, (2—1)*1;2;;2@)

00

WL (<§1>_1 T —k; (21)0‘01) x W (de + Raa, T — (k= k) — (n = 1); Edd) )

0o

where MN/(.) is the density of the matrix normal distribution and W~1(.) that of the inverse
Wishart.

Proposition 1 (Jeffreys’s prior) With Jeffreys’s prior (16), the posterior distributions of
B and % are:
B|SY, X ~N<B,Q> ,
SadZao | (570 Y, X ~ M (83800, S, (571),)).
N
o e (57) ),
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Saa | Y, X ~W! (de—FRdd,ﬁ-i‘kR— (n — 1)) :
where:

B=(F ('@ X'X)F)™ (F (37 @ X") vee(Z2))
O=(F(s'eX'X)F),
S=277-7XX'X)"'X'Z,

1

Rag = 2X (X'X)™ = Ly (I,X' X I) ™ 1) X' 2°,
Z =Y — XRcM*,
v=T—k.

Remark 1 (Jeffreys’s prior without constraints) Without constraints (R = 0), propo-

sition 1 boils down to the usual multivariate normal—inverse Wishart distribution:

B|LY, X ~/\/'<Uec(l§),§~2>,
SV, X ~ W (S,ﬂ),

where:

B=(X'X)""(X"Y),
Q=% XX)".

3.2 Minnesota Prior

When the VAR is unrestricted, the conventional way to design a prior for the coefficient on
variable i is: Bl ~ N (Eg, %E) where B; is line ¢ of B, with dimension (1,n). We choose

the restricted equivalent:

1
B~ N (gg,;z) , 1EU, (17)

%

BY ~ N (Q;?’,i (21);)1) , 1E€TR. (18)

We have the following prior on :

S~ WS, ). (19)



We implement this prior with dummy observations. For ¢ € U, we can add the dummy
observation (Y, X,) = (Vk,B;,/k,e;) where ¢; is the row vector of dimension k whose
element 7 is 1 and other elements are 0. The likelihood of that observation is proportional to:
157 exp (-2, - X;B)X7' (Y, - X,B)') x N (B;,1 %; B;). Toimplement the prior for

== Kq

1 € R, we construct the following observation:

Y, = Vk; (Ci Ef) X, = ke

We notice that:

Xi—KiB:\/Ei <C¢—Cz‘ ﬁf—Bio> :_\/Ei (O Bf_§?>'

Then, the likelihood of that dummy observation is proportional to:

1
S e (-5 0% - KBS (v, - X5 )

= [Sadl (7 e (—% (B = BY) (m: (271),,) (B = ﬁ?)’)

(2_1>;ol ; BZO) ’

1

Ki

— |de|71/2 X N <§?,

So, the likelihood of the dummy observations for equations (17-18) is proportional to the

‘—kR/2

density of the prior multiplied by |X44 where kx is the number of restricted coefficients

in the debt equation:
p(YP, X7 | B, ) o [Saa ™ x p(B | 2),

where Y?, X denote the stacked dummy observations for equations (17-18). There is one
dummy observation per right-hand side variable, so the number of rows of Y and X? is k.

Then, we have the posterior for B and X:

p(B, XY, X)xpY,X | B,XY) xp(B,X)
x [Saa**? x p(V, X, Y5, XP | B,%) x p(T). (20)

We also implement equation (19) with dummy observations. Formally, we add v times
the following dummy observations: (§jvj, (O)k), 1 < j < n, where s; is a scalar, v; is a row
vector of dimension n whose j™ element is 1 and other elements are 0 and (0); is a row

vector of dimension k whose elements are 0. The joint likelihood of those observations is



proportional to the density of the prior distribution in equation (19):

n 1 4 1 n
(H |E|—1/2 exp (—§§?Uj2—11;;>> = |E|—ng/2 exp <—§tr <E‘1g §?(’U;Uj)>>
j=1

j=1
x W (S, 13 %),
where:
st 0 0
S=v 0 5 0 , v=ny—(n+1).
0 0 s2

So, we can rewrite the posterior distribution in equation (20) into:
p(B.2|Y.X) o [Saal M x p(V, X | B, ), (21)

where Y and X are the stacked data and dummy observations that implement equations (17—
19). The number of rows of Y and X is T+ k + nv.

Using steps similar to those of section 3.1, we can use equation (21) to obtain the posterior
for B and ¥. Equation (15) gives us p(Y, X | B,X). The number of degrees of freedom of
Yaa and (271
is now 7'+ k +ny, so the exponents in equation (15) become —(T'+ny+kg)/2 = —(T+ v+
kg +n+1)/2 for [Sql and —(T +ny —1)/2 = —(T + v +n)/2 for ‘(271);)1

of |Sqa/*’? in equation (21) changes the exponent for [Sqq| to: —(T 4 v 4n+1)/2. Finally,

! require special attention. Including dummies, the number of observations

. The presence

the change of variables adds a factor of |Edd\"71 to the density, so it changes the exponent
to: —(T+v+n+1)/2+(n—1)=—(T+v— (n—1)+2)/2. The sizes of gq and (X1) )
are 1 and n — 1 respectively, so we need to subtract (1 +1)/2 and (n — 1+ 1)/2 from the
exponents (and multiply by -2) to obtain the number of degrees of freedom: T'+ v — (n — 1)

for ¥4y and T'+ v for (2*1)0_01. We arrive at the following proposition.

Proposition 2 (Minnesota prior) With the Minnesota prior (17-19), the posterior dis-

tributions of B and % are:

B|%,Y,X ~N(B,Q),
E;dlzdo | (E_l)gol 7}_/7)2 ~ MN <'§d_d1'§d07 S(d_(/i17 (2_1)71> ’

el
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where:

Remark 2 (Minnesota prior without constraint) Remark 1 applies to the Minnesota

prior with an appropriate change of notation.

4 Posterior Mode

We want to find the mode of the posterior distribution given the observed data. Since some

data may be missing, we need to integrate over the missing data:

p(B, S| Y% X°) = / p(B, 2| Y, X)p(Y™X™ | Y°, X°)dY™dX™
ym xm
=E"[p(B,X|Y,X)].
4.1 Mode with Jeffreys’s Prior
p(B,% | Y, X) can be deduced from proposition 1:

P’ =p(B, S Y, X)

U o-oeeon)

R R

1 ~ o~ \! ~ ~
X exp (—ﬁtr ((E_l)oo (E;;Zdo — Sd_dlSdo> Sad (E;;Edo — Sd_dlsd0>))

’(17+k7z(n1))/2 |de|7(z7+k7z+n+l)/2

x|

X

X gdd + Rdd

11



o (=gt (S (S + Fur)) )
CONNERR

X exp (—%tr ((21)00 (Sl>_1)> . (22)

We note that we have reverted the change of variable by multiplying the density by |Sqq| ="V,

—(I+(n—1)41)/2
X

We know | Q! | from equation (9) and we can use it to simplify the determinants of P°

to:

(n—1)/2 (+kr—(n—1))/2 /2

Sad + Rad

().

< | X' X |V E XX LR s T2 (3)

‘gdd

To find the first-order condition with respect to B, it will be convenient to notice that the

only term of P° that depends on B is:

o (~gur ((5-8) 2 (5-5))). (24)

To find the first-order condition with respect to X, it will be convenient to use the original

formulation of the trace term in P°:
tr (2—1@> ., U=(Y-BX) (Y- BX). (25)

The first-order conditions with respect to B and ¥ yield proposition 3.
Proposition 3 (mode with Jeffreys’s prior) With Jeffreys’s prior (16), the mode of the
posterior distribution is characterized by:
B=(E" [PF (27 @ (X'X)) FD_I (B [PF (27 @ X') vec (Y = XReM?)] ),
. B[Py
v+ k+n+1 EmP

Y

where:

¥ = (Y — BX) (Y — BX),

(n—1)/2 v/2

(D+kr—(n—1))/2 B
R ’X/X|(n 1)/2‘11//{X/XIM|1/2

P = |5

‘de + Raq

().

12



coxp (~gir (2719) )

Remark 3 (mode without missing observations) In the particular case where there

are no missing observations, the mode of the posterior distribution is simply given by:

vee(B) = (F/ (37" @ (X'X)) F) ™' (F' (7' @ X') vee (Y — XReM?))

B Y
v+k+n+1

4.2 Mode with Minnesota Prior

As in section 3.2, the argument is similar to the case of Jeffreys’s prior, with an adjustment

to the degrees of freedom of ¥44. As a result, equation (23) becomes:

| gdd |(n—1)/2| gdd+Rdd |(17—(n—1))/2| (5«—1)—1 |z7/2

00

X | X'X |02 [ XX Ly V2] Bgq [FR2] 8 |7kt D2 0 (96)

and W is replaced by: ¥ = (37 — BX)/ (}7 — BX).
The first-order conditions with respect to B and . yield proposition 4.
Proposition 4 (mode with Minnesota prior) With the Minnesota prior (17-19), the

mode of the posterior distribution is characterized by:

B= (B [PF (57 @ (XX)) F)) ™ (£ [PF (57 © X') vee(2)])

1 E™ [P 44
Ydd = = —,
V+l€—l€7z+n+1 Emp
. 1 E™ [P
O Ut k—kr+n+l EmP
| Em [PU,,]
Yoo = =S k Yo 2_12 o | >
V+k+n+1< Enp IR dddd)

where:

7=Y - XReM?,
¥ = (¥ - BX)' (¥ - BX),

v/2 | o n—1)/2

|X/X-|( 1/2

P = 18| Saa + Raa] "

xema(_%m(z—wq).

(57,

00

|1, X' X Iy

13



Remark 4 (mode without missing observations) Remark 8 applies to the Minnesota

prior with appropriate changes of formula.

Remark 5 (computational difficulty) When many data points are missing (i.e., when
Y™ and X™ are of high dimension), we found that using the draws of Y™ and X™ obtained
from the state smoother was unreliable, even if the BVAR is unconstrained. So we only report
the impulse response function (IRF) at the mode when no data is missing and we report the

pointwise median IRF otherwise.

5 Related Approaches

The posterior distribution could also be estimated by Gibbs sampling: (i) sample B condi-
tional on ¥ and (ii) sample ¥ conditional on B. For example, Jarocinski and Karadi (2020)
estimate a BVAR with all coefficients restricted to 0 in the first equation. This approach
would be perfectly valid but computationally slower, since the draws are no longer indepen-
dent and more draws must be taken. In our application, some data is missing, so we must
run a Kalman filter and state smoother at every draw. The additional computational time
of every draw can make an increased number prohibitive.

Antolin-Diaz et al. (2025) propose a constrained BVAR with restrictions on the autore-
gressive coefficients and the covariance matrix. Their procedure requires a custom impor-
tance sampling algorithm. We do not have restrictions on the covariance matrix, which
allows us to derive analytical expressions for its posterior distribution and avoids the need
for importance sampling.

In short, our approach maximizes analytical tractability and minimizes computational

complexity, at the cost of lengthy derivations.
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