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This note is a companion to Bouscasse and Hong (2026). We derive analytical expressions

for the likelihood, posterior distribution, and mode of the posterior distribution of a Bayesian

vector autoregression (BVAR) in which some coefficients are constrained. The constraint is a

linear constraint on some (perhaps all) of the autoregressive coefficients of the first equation

of the BVAR. We study two cases: a flat prior and a Minnesota prior implemented with

dummy variables, both with and without missing data. We use this constrained VAR in

appendix E.3 of Bouscasse and Hong (2026).

1 Notations

The BVAR model is:

yt+1 =
L∑
l=1

B(l)′yt+1−l +B′
cct+1 + ut+1, ut+1 ∼ N (0,Σ), (1)

where yt+1 is the vector of endogenous variables at time t + 1, ct+1 denotes the exogenous

controls, and ut+1 is the error term. We rewrite it by gathering the lagged values of the

endogenous variables and the controls:

yt+1 = B′xt+1 + ut+1, ut+1 ∼ N (0,Σ), (2)

where: xt+1 =
(
y′t, y

′
t−1, . . . , yt+1−L, ct+1

)′
and B = (B(1)′, B(2)′, . . . , B(L)′, B′

c)
′. Stacking

the observations y′t, x
′
t vertically, we can rewrite the VAR as a seemingly unrelated regressions
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system:

Y = XB + U, U ∼ MN (0, IT ,Σ). (3)

The dimensions of Y , X, U , B, and Σ are respectively (T, n), (T, k), (T, n), (k, n), and (n, n)

where T is the number of observations, n the number of endogenous variables, k the number

of right-hand side variables. Moreover, we have: k = n × L + q, where L is the number of

lags and q the number of control variables. MN (0, IT ,Σ) is the matrix normal distribution

with variance among rows IT and variance among columns Σ.

In our application, the vector yt is partitioned into its debt component and its other

variables: y′t = (dt−1, y
o
t
′). We can partition B as: B =

(
Bd Bo

)
. Superscript d denotes

the first column, which contains the coefficients for the debt equation; superscript o is for

the n− 1 other equations. Although we use the notation of our application, the derivations

apply to any linear restriction on the coefficients of the first equation.

We write the restriction as a subset of the rows of Bd, R ⊂ [1, k], being equal to a

constant column vector c:

Bd
R = c. (4)

We denote the subset of unrestricted columns of Bd, U . Note that we have:

XBd = XRBd
R +XUBd

U = XRc+XUBd
U ,

where XR (XU) are the columns of X whose coefficients are restricted (unrestricted) in the

debt equation. We denote kR the number of restricted coefficients in the debt equation.

Given this restriction, we note that:

XB =
(
XRc+XUBd

U XBo
)
= XRcMd +XUBd

UM
d +XBoM o, (5)

where:

Md =
(
1 (0)1,n−1

)
, M o =

(
(0)n−1,1 In−1

)
.
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2 Likelihood

The likelihood of the system described in equation (3) is:

p(Y,X | B,Σ) ∝ |Σ|−T/2 exp

(
−1

2
vec (Y −XB)′

(
Σ−1 ⊗ IT

)
vec (Y −XB)

)
.

We can rewrite vec (Y −XB) with equation (5):

vec (Y −XB) = vec
(
Y −XRcMd −XUBd

UM
d −XBoM o

)
= Y − XB,

where curly types denote:

Y = vec
(
Y −XRcMd

)
, X =

(
XU (0)

(0) In−1 ⊗X

)
, B = vec

(
B \Bd

R
)
.

So, we obtain the likelihood as:

p(Y,X | B,Σ) ∝ |Σ|−T/2 exp

(
−1

2
(Y − XB)′

(
Σ−1 ⊗ IT

)
(Y − XB)

)
. (6)

2.1 Density for B

We turn equation (6) into a density for B. To do so, we transform the trace term in

equation (6) by completing the square:

(Y − XB)′
(
Σ−1 ⊗ IT

)
(Y − XB)

=
(
B − B̃

)′
Ω̃−1

(
B − B̃

)
+ Y ′ (Σ−1 ⊗ IT

)
Y − B̃′Ω̃−1B̃,

where:

B̃ =
(
X ′ (Σ−1 ⊗ IT

)
X
)−1 (X ′ (Σ−1 ⊗ IT

)
Y
)
,

Ω̃ =
(
X ′ (Σ−1 ⊗ IT

)
X
)−1

.

So, we can rewrite equation (6) by transforming the term featuring B into a multivariate

normal density:

p(B,Σ | Y,X) ∝
∣∣∣Ω̃∣∣∣1/2N (

B̃, Ω̃;B
)
× |Σ|−T/2 exp

(
−1

2

(
Y ′ (Σ−1 ⊗ IT

)
Y − B̃′Ω̃−1B̃

))
, (7)
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where N
(
B̃, Ω̃;B

)
is a multivariate normal density for B with mean B̃ and variance Ω̃.

We need an explicit expression for
∣∣∣Ω̃∣∣∣. We first note that we can rewrite X as:

X =

(
XU (0)

(0) In−1 ⊗X

)
= (In ⊗X)F, F =

(
IU 0(k,(n−1)k)

0((n−1)k,k−kR) I(n−1)k

)
,

where IU is a (k, k − kR) matrix that selects the elements of X that are unrestricted in the

debt equation: XU = XIU . Using the definition of Ω̃, we obtain Ω̃−1:

Ω̃−1 = F ′ (Σ−1 ⊗ (X ′X)
)
F =

(
(Σ−1)dd ⊗ (I ′UX

′XIU) (Σ−1)do ⊗ (I ′UX
′X)

(Σ−1)od ⊗ (X ′XIU) (Σ−1)oo ⊗X ′X

)
. (8)

Equation (8) allows us to compute the determinant of Ω̃−1:∣∣∣Ω̃−1
∣∣∣ = ∣∣(Σ−1

)
oo
⊗X ′X

∣∣
×
∣∣(Σ−1)dd ⊗ (I ′UX

′XIU)

−
(
(Σ−1)do

(
Σ−1

)−1

oo
(Σ−1)od

)
⊗
(
I ′UX

′X(X ′X)−1X ′XIU
)∣∣

=
∣∣(Σ−1

)
oo

∣∣k |X ′X|n−1 ×
∣∣Σ−1

dd

∣∣k−kR |I ′UX ′XIU | . (9)

It will also be useful to transform the determinant of Σ:

|Σ| = |Σdd|
∣∣Σoo − ΣodΣ

−1
dd Σdo

∣∣ = |Σdd|
∣∣∣(Σ−1

)−1

oo

∣∣∣ . (10)

Using equations (9–10), we can rewrite equation (7):

p(B,Σ | Y,X) ∝ N
(
B̃, Ω̃;B

)
× |Σdd|−(T−(k−kR))/2

∣∣∣(Σ−1
)−1

oo

∣∣∣−(T−k)/2

exp

(
−1

2

(
Y ′ (Σ−1 ⊗ IT

)
Y − B̃′Ω̃−1B̃

))
. (11)

2.2 Density for Σ

We turn equation (11) into a density for Σ. To do so, we find an expression for B̄′Ω̃−1B̄, which
appears in equation (7). Inverting Ω̃−1 with standard block matrix formulas, we obtain the

4 blocks of Ω̃:

Ω̃dd =Σdd ⊗ (I ′UX
′XIU)

−1
,

Ω̃oo =
(
Σ−1

)−1

oo
⊗ (X ′X)−1 +

(
ΣodΣ

−1
dd Σdo

)
⊗
(
IU (I ′UX

′XIU)
−1

I ′U

)
,
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Ω̃do =Σdo ⊗
(
(I ′UX

′XIU)
−1

I ′U

)
,

Ω̃od =Σod ⊗
(
IU (I ′UX

′XIU)
−1
)
.

It will soon be convenient to also know F Ω̃F ′:(
F Ω̃F ′

)
dd

=Σdd ⊗
(
IU (I ′UX

′XIU)
−1

I ′U

)
,(

F Ω̃F ′
)
oo

=Σoo ⊗
(
IU (I ′UX

′XIU)
−1

I ′U

)
+
(
Σ−1

)−1

oo
⊗
(
(X ′X)−1 − (I ′UX

′XIU)
−1

I ′U

)
,(

F Ω̃F ′
)
do

=Σdo ⊗
(
IU (I ′UX

′XIU)
−1

I ′U

)
,(

F Ω̃F ′
)
do

=Σod ⊗
(
IU (I ′UX

′XIU)
−1

I ′U

)
,

where we have used: Σoo = (Σ−1)
−1
oo + ΣodΣ

−1
dd Σdo. We can express the latter more simply:

F Ω̃F ′ = Σ⊗ ΩU + Σ̃oo ⊗ (ΩX − ΩU) , (12)

where:

Σ̃oo =

(
0 (0)

(0) (Σ−1)
−1
oo

)
, ΩX = (X ′X)−1, ΩU = IU (I ′UX

′XIU)
−1

I ′U .

Back to B̄′Ω̃−1B̄:

B̄′Ω̃−1B̄ =Y ′ (Σ−1 ⊗X
)
F Ω̃F ′ (Σ−1 ⊗X ′)Y

=Y ′
(
Σ−1 ⊗ (XΩUX

′) +
(
Σ−1Σ̃ooΣ

−1
)
⊗ (X(ΩX − ΩU)X

′)
)
Y .

We notice that:

Σ−1Σ̃ooΣ
−1 =

(
(Σ−1)do (Σ

−1)
−1
oo (Σ−1)od (Σ−1)do

(Σ−1)od (Σ−1)oo

)
= Σ−1 − Σ̃dd.1, Σ̃dd.1 =

(
Σ−1

dd (0)

(0) (0)

)
.

Finally, we have:

B̄′Ω̃−1B̄ = tr
(
Σ−1Z ′X(X ′X)−1X ′Z

)
− tr

(
Σ−1

dd Z
dX
(
(X ′X)−1 − IU (I ′UX

′XIU)
−1

I ′U

)
X ′Zd

)
, (13)

where Z = Y −XRcMd and Zd is the debt column of Z. So, equation (11) becomes:
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p(Y,X | B,Σ) ∝ N
(
B̃, Ω̃;B

)
× |Σdd|−(T−(k−kR))/2

∣∣∣(Σ−1
)−1

oo

∣∣∣−(T−k)/2

× exp

(
−1

2

(
tr
(
Σ−1S̃

)
+ tr

(
Σ−1

dd R̃dd

)))
, (14)

where:

S̃ = Z ′Z − Z ′X(X ′X)−1X ′Z,

R̃dd = Zd′X
(
(X ′X)−1 − IU (I ′UX

′XIU)
−1

I ′U

)
X ′Zd.

2.3 Change of Variables

Once we introduce the prior distributions, we perform the following change of variables:

Σdo → Σ−1
dd Σdo and Σoo → (Σ−1)

−1
oo = Σoo − ΣodΣ

−1
dd Σdo.

1 So, we rewrite the trace terms of

equation (11) in terms of these new variables:

tr
(
Σ−1S̃

)
+ tr

(
Σ−1

dd R̃dd

)
= tr

(
Σ−1

dd

(
S̃dd + R̃dd

))
+ tr

((
Σ−1

)
oo

(
S̃−1

)−1

oo

)
+ tr

((
Σ−1

)
oo

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)′
S̃dd

(
Σ−1

dd Σdo − S̃−1
dd S̃do

))
.

We obtain a final expression for the likelihood:

p
(
Y,X | B,Σdd,

(
Σ−1

)−1

oo
,Σ−1

dd Σdo

)
∝ N

(
B̃, Ω̃;B

)
×
∣∣∣(Σ−1

)−1

oo

∣∣∣−1/2

× exp

(
−1

2
tr

((
Σ−1

)
oo

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)′
S̃dd

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)))
× |Σdd|−(T−(k−kR))/2 exp

(
−1

2
tr
(
Σ−1

dd

(
S̃dd + R̃dd

)))
×
∣∣∣(Σ−1

)−1

oo

∣∣∣−(T−k−1)/2

exp

(
−1

2
tr

((
Σ−1

)
oo

(
S̃−1

)−1

oo

)
; Σ−1

dd Σdo

)
. (15)

1This change of variables is a standard step to derive the marginal distributions of a Wishart or inverse
Wishart distribution. See Gupta and Nagar (2018, theorem 3.3.9) for an example.
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3 Posterior Distribution

3.1 Jeffreys’s Prior

We now assume Jeffreys’s prior:

p(B,Σ) ∝ |Σ|−(n+1)/2 = |Σdd|−(n+1)/2
∣∣∣(Σ−1

)−1

oo

∣∣∣−(n+1)/2

. (16)

Combining this prior and the likelihood in (15):

p (B,Σ | Y,X) ∝ p (Y,X | B,Σ)× p(B,Σ)

∝ N
(
B̃, Ω̃;B

)
×
∣∣∣(Σ−1

)−1

oo

∣∣∣−1/2

× exp

(
−1

2
tr

((
Σ−1

)
oo

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)′
S̃dd

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)))
× |Σdd|−(T−(k−kR)+n+1)/2 exp

(
−1

2
tr
(
Σ−1

dd

(
S̃dd + R̃dd

)))
×
∣∣∣(Σ−1

)−1

oo

∣∣∣−(T−k+n)/2

exp

(
−1

2
tr

((
Σ−1

)
oo

(
S̃−1

)−1

oo

)
; Σ−1

dd Σdo

)
.

We now perform the change of variables mentioned in section 2: Σdo → Σ−1
dd Σdo and

Σoo → (Σ−1)
−1
oo = Σoo − ΣodΣ

−1
dd Σdo. We need to multiply the density by the determinant of

the Jacobian of this change of variables, |Σdd|n−1. So, we obtain:

p
(
B,Σdo,

(
Σ−1

)−1

oo
,Σdd | Y,X

)
∝ N

(
B̃, Ω̃;B

)
×MN

(
S̃−1
dd S̃do, S̃

−1
dd ,
(
Σ−1

)−1

oo
; Σ−1

dd Σdo

)
×W−1

((
S̃−1

)−1

oo
, T − k;

(
Σ−1

)−1

oo

)
×W−1

(
S̃dd + R̃dd, T − (k − kR)− (n− 1); Σdd

)
,

where MN (.) is the density of the matrix normal distribution and W−1(.) that of the inverse

Wishart.

Proposition 1 (Jeffreys’s prior) With Jeffreys’s prior (16), the posterior distributions of

B and Σ are:

B | Σ, Y,X ∼ N
(
B̃, Ω̃

)
,

Σ−1
dd Σdo |

(
Σ−1

)−1

oo
, Y,X ∼ MN

(
S̃−1
dd S̃do, S̃

−1
dd ,
(
Σ−1

)−1

oo

)
,(

Σ−1
)−1

oo
| Y,X ∼ W−1

((
S̃−1

)−1

oo
, ν̃

)
,
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Σdd | Y,X ∼ W−1
(
S̃dd + R̃dd, ν̃ + kR − (n− 1)

)
,

where:

B̃ =
(
F ′ (Σ−1 ⊗X ′X

)
F
)−1 (

F ′ (Σ−1 ⊗X ′) vec(Z)) ,
Ω̃ =

(
F ′ (Σ−1 ⊗X ′X

)
F
)−1

,

S̃ = Z ′Z − Z ′X(X ′X)−1X ′Z,

R̃dd = Zd′X
(
(X ′X)−1 − IU (I ′UX

′XIU)
−1

I ′U

)
X ′Zd,

Z = Y −XRcMd,

ν̃ = T − k.

Remark 1 (Jeffreys’s prior without constraints) Without constraints (R = ∅), propo-
sition 1 boils down to the usual multivariate normal–inverse Wishart distribution:

B | Σ, Y,X ∼ N
(
vec(B̃), Ω̃

)
,

Σ | Y,X ∼ W−1
(
S̃, ν̃

)
,

where:

B̃ = (X ′X)
−1

(X ′Y ) ,

Ω̃ = Σ⊗ (X ′X)
−1

.

3.2 Minnesota Prior

When the VAR is unrestricted, the conventional way to design a prior for the coefficient on

variable i is: B′
i ∼ N

(
B′

i,
1
κi
Σ
)
where Bi is line i of B, with dimension (1, n). We choose

the restricted equivalent:

B′
i ∼ N

(
B′

i,
1

κi

Σ

)
, i ∈ U , (17)

Bo
i
′ ∼ N

(
Bo

i
′,
1

κi

(
Σ−1

)−1

oo

)
, i ∈ R. (18)

We have the following prior on Σ:

Σ ∼ W−1 (S, ν) . (19)
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We implement this prior with dummy observations. For i ∈ U , we can add the dummy

observation (Y i, X i) = (
√
κiBi,

√
κiei) where ei is the row vector of dimension k whose

element i is 1 and other elements are 0. The likelihood of that observation is proportional to:

|Σ|−1/2 exp
(
−1

2
(Y i −X iB) Σ−1 (Y i −X iB)′

)
∝ N

(
Bi,

1
κ i
Σ;Bi

)
. To implement the prior for

i ∈ R, we construct the following observation:

Y i =
√
κi

(
ci Bo

i

)
X i =

√
κiei.

We notice that:

Y i −X iB =
√
κi

(
ci − ci Bo

i −Bo
i

)
= −

√
κi

(
0 Bo

i −Bo
i

)
.

Then, the likelihood of that dummy observation is proportional to:

|Σ|−1/2 exp

(
−1

2
(Y i −X iB) Σ−1 (Y i −X iB)′

)
= |Σdd|−1/2

∣∣(Σ−1)−1
oo

∣∣−1/2
exp

(
−1

2
(Bo

i −Bo
i )
(
κi

(
Σ−1

)
oo

)
(Bo

i −Bo
i )

′
)

= |Σdd|−1/2 ×N
(
Bo

i ,
1

κi

(
Σ−1

)−1

oo
;Bo

i

)
.

So, the likelihood of the dummy observations for equations (17–18) is proportional to the

density of the prior multiplied by |Σdd|−kR/2 where kR is the number of restricted coefficients

in the debt equation:

p(Y B, XB | B,Σ) ∝ |Σdd|−kR/2 × p(B | Σ),

where Y B, XB denote the stacked dummy observations for equations (17–18). There is one

dummy observation per right-hand side variable, so the number of rows of Y B and XB is k.

Then, we have the posterior for B and Σ:

p(B,Σ | Y,X) ∝ p(Y,X | B,Σ)× p(B,Σ)

∝ |Σdd|kR/2 × p(Y,X, Y B, XB | B,Σ)× p(Σ). (20)

We also implement equation (19) with dummy observations. Formally, we add ν times

the following dummy observations:
(
sjvj, (0)k

)
, 1 ≤ j ≤ n, where sj is a scalar, vj is a row

vector of dimension n whose jth element is 1 and other elements are 0 and (0)k is a row

vector of dimension k whose elements are 0. The joint likelihood of those observations is
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proportional to the density of the prior distribution in equation (19):(
n∏

j=1

|Σ|−1/2 exp

(
−1

2
s2jvjΣ

−1v′j

))ν

= |Σ|−nν/2 exp

(
−1

2
tr

(
Σ−1ν

n∑
j=1

s2j(v
′
jvj)

))
∝ W−1 (S, ν; Σ) ,

where:

S = ν


s21 0

... 0

0 s22
... 0

. . . . . .
... . . .

0 0
... s2n

 , ν = nν − (n+ 1).

So, we can rewrite the posterior distribution in equation (20) into:

p(B,Σ | Y,X) ∝ |Σdd|kR/2 × p(Ȳ , X̄ | B,Σ), (21)

where Ȳ and X̄ are the stacked data and dummy observations that implement equations (17–

19). The number of rows of Ȳ and X̄ is T + k + nν.

Using steps similar to those of section 3.1, we can use equation (21) to obtain the posterior

for B and Σ. Equation (15) gives us p(Ȳ , X̄ | B,Σ). The number of degrees of freedom of

Σdd and (Σ−1)
−1
oo require special attention. Including dummies, the number of observations

is now T +k+nν, so the exponents in equation (15) become −(T +nν+kR)/2 = −(T +ν+

kR + n+ 1)/2 for |Σdd| and −(T + nν − 1)/2 = −(T + ν + n)/2 for
∣∣∣(Σ−1)

−1
oo

∣∣∣. The presence
of |Σdd|kR/2 in equation (21) changes the exponent for |Σdd| to: −(T + ν +n+1)/2. Finally,

the change of variables adds a factor of |Σdd|n−1 to the density, so it changes the exponent

to: −(T + ν + n+ 1)/2 + (n− 1) = −(T + ν − (n− 1) + 2)/2. The sizes of Σdd and (Σ−1)
−1
oo

are 1 and n − 1 respectively, so we need to subtract (1 + 1)/2 and (n − 1 + 1)/2 from the

exponents (and multiply by -2) to obtain the number of degrees of freedom: T + ν − (n− 1)

for Σdd and T + ν for (Σ−1)
−1
oo . We arrive at the following proposition.

Proposition 2 (Minnesota prior) With the Minnesota prior (17–19), the posterior dis-

tributions of B and Σ are:

B | Σ, Ȳ , X̄ ∼ N
(
B̄, Ω̄

)
,

Σ−1
dd Σdo |

(
Σ−1

)−1

oo
, Ȳ , X̄ ∼ MN

(
S̄−1
dd S̄do, S̄

−1
dd ,
(
Σ−1

)−1

oo

)
,
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(
Σ−1

)−1

oo
| Ȳ , X̄ ∼ W−1

((
S̄−1

)−1

oo
, ν̄
)
,

Σdd | Ȳ , X̄ ∼ W−1
(
S̄dd + R̄dd, ν̄ − (n− 1)

)
,

where:

B̄ =
(
F ′ (Σ−1 ⊗ X̄ ′X̄

)
F
)−1 (

F ′ (Σ−1 ⊗ X̄ ′) vec(Z̄)) ,
Ω̄ =

(
F ′ (Σ−1 ⊗ X̄ ′X̄

)
F
)−1

,

S̄ = Z̄ ′Z̄ − Z̄ ′X̄(X̄ ′X̄)−1X̄ ′Z̄,

R̄dd = Z̄d′X̄
(
(X̄ ′X̄)−1 − IU

(
I ′UX̄

′X̄IU
)−1

I ′U

)
X̄ ′Z̄d,

Z̄ = Ȳ − X̄RcMd,

ν̄ = T + ν.

Remark 2 (Minnesota prior without constraint) Remark 1 applies to the Minnesota

prior with an appropriate change of notation.

4 Posterior Mode

We want to find the mode of the posterior distribution given the observed data. Since some

data may be missing, we need to integrate over the missing data:

p(B,Σ | Y o, Xo) =

∫
Y m,Xm

p(B,Σ | Y,X)p(Y mXm | Y o, Xo)dY mdXm

= Em [p(B,Σ | Y,X)] .

4.1 Mode with Jeffreys’s Prior

p(B,Σ | Y,X) can be deduced from proposition 1:

P̃0 =p(B,Σ | Y,X)

∝
∣∣∣Ω̃∣∣∣−1/2

exp

(
−1

2
tr

((
B − B̃

)′
Ω̃−1

(
B − B̃

)))
×
∣∣∣S̃−1

dd

∣∣∣−(n−1)/2 ∣∣∣(Σ−1
)−1

oo

∣∣∣−1/2

× exp

(
−1

2
tr

((
Σ−1

)
oo

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)′
S̃dd

(
Σ−1

dd Σdo − S̃−1
dd S̃do

)))
×
∣∣∣S̃dd + R̃dd

∣∣∣(ν̃+kR−(n−1))/2

|Σdd|−(ν̃+kR+n+1)/2
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× exp

(
−1

2
tr
(
Σ−1

dd

(
S̃dd + R̃dd

)))
×
∣∣∣∣(S̃−1

)−1

oo

∣∣∣∣ν̃/2 ∣∣∣(Σ−1
)−1

oo

∣∣∣−(ν̃+(n−1)+1)/2

× exp

(
−1

2
tr

((
Σ−1

)
oo

(
S̃−1

)−1

oo

))
. (22)

We note that we have reverted the change of variable by multiplying the density by |Σdd|−(n−1).

We know | Ω̃−1 | from equation (9) and we can use it to simplify the determinants of P̃0

to:

∣∣∣S̃dd

∣∣∣(n−1)/2 ∣∣∣S̃dd + R̃dd

∣∣∣(ν̃+kR−(n−1))/2
∣∣∣∣(S̃−1

)−1

oo

∣∣∣∣ν̃/2
× |X ′X|(n−1)/2 |I ′UX ′XIU |1/2 |Σ|−(ν̃+k+n+1)/2 . (23)

To find the first-order condition with respect to B, it will be convenient to notice that the

only term of P̃0 that depends on B is:

exp

(
−1

2
tr

((
B − B̃

)′
Ω̃−1

(
B − B̃

)))
. (24)

To find the first-order condition with respect to Σ, it will be convenient to use the original

formulation of the trace term in P̃0:

tr
(
Σ−1Ψ̃

)
, Ψ̃ = (Y −BX)′ (Y −BX) . (25)

The first-order conditions with respect to B and Σ yield proposition 3.

Proposition 3 (mode with Jeffreys’s prior) With Jeffreys’s prior (16), the mode of the

posterior distribution is characterized by:

B =
(
Em

[
P̃F ′ (Σ−1 ⊗ (X ′X)

)
F
])−1 (

Em
[
P̃F ′ (Σ−1 ⊗X ′) vec (Y −XRcMd

)])
,

Σ =
1

ν̃ + k + n+ 1

Em
[
P̃Ψ̃
]

EmP̃
,

where:

Ψ̃ = (Y −BX)′ (Y −BX) ,

P̃ =
∣∣∣S̃dd

∣∣∣(n−1)/2 ∣∣∣S̃dd + R̃dd

∣∣∣(ν̃+kR−(n−1))/2
∣∣∣∣(S̃−1

)−1

oo

∣∣∣∣ν̃/2 |X ′X|(n−1)/2 |I ′UX ′XIU |1/2
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× exp

(
−1

2
tr
(
Σ−1Ψ̃

))
.

Remark 3 (mode without missing observations) In the particular case where there

are no missing observations, the mode of the posterior distribution is simply given by:

vec(B) =
(
F ′ (Σ−1 ⊗ (X ′X)

)
F
)−1 (

F ′ (Σ−1 ⊗X ′) vec (Y −XRcMd
))

,

Σ =
Ψ̃

ν̃ + k + n+ 1
.

4.2 Mode with Minnesota Prior

As in section 3.2, the argument is similar to the case of Jeffreys’s prior, with an adjustment

to the degrees of freedom of Σdd. As a result, equation (23) becomes:

| S̄dd |(n−1)/2| S̄dd + R̄dd |(ν̄−(n−1))/2| (S̄−1)−1
oo |ν̄/2

× | X̄ ′X̄ |(n−1)/2| I ′UX̄ ′X̄IU |1/2| Σdd |kR/2| Σ |−(ν̄+k+n+1)/2 . (26)

and Ψ̃ is replaced by: Ψ̄ =
(
Ȳ −BX̄

)′ (
Ȳ −BX̄

)
.

The first-order conditions with respect to B and Σ yield proposition 4.

Proposition 4 (mode with Minnesota prior) With the Minnesota prior (17–19), the

mode of the posterior distribution is characterized by:

B =
(
Em

[
P̄F ′ (Σ−1 ⊗ (X̄ ′X̄)

)
F
])−1 (

Em
[
P̄F ′ (Σ−1 ⊗ X̄ ′) vec(Z̄)]) ,

Σdd =
1

ν̄ + k − kR + n+ 1

Em
[
P̄Ψ̄dd

]
EmP̄

,

Σdo =
1

ν̄ + k − kR + n+ 1

Em
[
P̄Ψ̄do

]
EmP̄

,

Σoo =
1

ν̄ + k + n+ 1

(
Em

[
P̄Ψ̄oo

]
EmP̄

+ kRΣodΣ
−1
dd Σdo

)
,

where:

Z̄ = Ȳ − X̄RcMd,

Ψ̄ =
(
Ȳ −BX̄

)′ (
Ȳ −BX̄

)
,

P̄ =
∣∣S̄dd

∣∣(n−1)/2 ∣∣S̄dd + R̄dd

∣∣(ν̄−(n−1))/2
∣∣∣(S̄−1

)−1

oo

∣∣∣ν̄/2 ∣∣X̄ ′X̄
∣∣(n−1)/2 ∣∣I ′UX̄ ′X̄IU

∣∣1/2
× exp

(
−1

2
tr
(
Σ−1Ψ̄

))
.
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Remark 4 (mode without missing observations) Remark 3 applies to the Minnesota

prior with appropriate changes of formula.

Remark 5 (computational difficulty) When many data points are missing (i.e., when

Y m and Xm are of high dimension), we found that using the draws of Y m and Xm obtained

from the state smoother was unreliable, even if the BVAR is unconstrained. So we only report

the impulse response function (IRF) at the mode when no data is missing and we report the

pointwise median IRF otherwise.

5 Related Approaches

The posterior distribution could also be estimated by Gibbs sampling: (i) sample B condi-

tional on Σ and (ii) sample Σ conditional on B. For example, Jarociński and Karadi (2020)

estimate a BVAR with all coefficients restricted to 0 in the first equation. This approach

would be perfectly valid but computationally slower, since the draws are no longer indepen-

dent and more draws must be taken. In our application, some data is missing, so we must

run a Kalman filter and state smoother at every draw. The additional computational time

of every draw can make an increased number prohibitive.

Antoĺın-Dı́az et al. (2025) propose a constrained BVAR with restrictions on the autore-

gressive coefficients and the covariance matrix. Their procedure requires a custom impor-

tance sampling algorithm. We do not have restrictions on the covariance matrix, which

allows us to derive analytical expressions for its posterior distribution and avoids the need

for importance sampling.

In short, our approach maximizes analytical tractability and minimizes computational

complexity, at the cost of lengthy derivations.
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